Title: | Linked Emulator of a Coupled System of Simulators |
---|---|
Description: | Prototypes for construction of a Gaussian Stochastic Process emulator (GASP) of a computer model. This is done within the objective Bayesian implementation of the GASP. The package allows for construction of a linked GASP of the composite computer model. Computational implementation follows the mathematical exposition given in publication: Ksenia N. Kyzyurova, James O. Berger, Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, (2018).<DOI:10.1137/17M1157702>. |
Authors: | Ksenia N. Kyzyurova, kseniak.ucoz.net |
Maintainer: | Ksenia N. Kyzyurova <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0 |
Built: | 2025-03-22 03:58:27 UTC |
Source: | https://github.com/cran/LinkedGASP |
Function plots the empirical true linked emulator in case of one-dimensional input.
emp_GASP_plot(em, fun, data, emul_type, exp.ql, exp.qu, labels, ylab, xlab, ylim, col_CI_area, col_points, col_fun, col_mean, points)
emp_GASP_plot(em, fun, data, emul_type, exp.ql, exp.qu, labels, ylab, xlab, ylim, col_CI_area, col_points, col_fun, col_mean, points)
em |
the returned output from the function eval_type1_GASP(...) or eval_type2_GASP(...). |
fun |
Simulator function. Currently only one-dimensional input is supported. |
data |
Training data and smoothness. The same as supplied to eval_GASP_RFP(...) for construction of the GASP. |
emul_type |
A text string which provides description of an emulator. |
exp.ql |
Quantile 0.025 |
exp.qu |
Quantile 0.975 |
labels |
As in standard R plot. |
ylab |
As in standard R plot. |
xlab |
As in standard R plot. |
ylim |
As in standard R plot. |
col_CI_area |
Color of a credible area. |
col_points |
Color of the training points. |
col_fun |
Color of a simulator function. |
col_mean |
Color of the emulator of the GASP mean. |
points |
Default is FALSE. To plot or not the training points. |
Plot
Ksenia N. Kyzyurova, kseniak.ucoz.net
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## Function f2 is a simulator f2<-function(x){cos(5*x)} ## Function f2(f1) is a simulator of a composite model f2f1 <- function(x){f2(f1(x))} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with the ## assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs) par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) GASP_plot(GASP_type2_f1,f1,data.f1,"Type 2 GASP",ylab = " f",xlab = "x", ylim = ylim, plot_training = TRUE) s = GASP_type2_f1$mu s.var = diag(GASP_type2_f1$var) x2 = seq(-0.95,0.95,length = 6)#f1(x1) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) # linking requires this emulator ## to have smoothness parameter equal to 2 f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) GASP_type1_f2 <- eval_type1_GASP(as.matrix(seq(-3.5,3.5,.01)),f2_MLEs) GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1,1,.01)),f2_MLEs) TGASP_f2 <- eval_TGASP(as.matrix(seq(-1,1,.01)),f2_MLEs) ylim = c(-1.5,1.5) # labels = c(expression(phantom(x)*phantom(x)*phantom(x)*f(x[1])), # expression(f(x[2])*phantom(x)*phantom(x)*phantom(x)), # expression(f(x[3])),expression(f(x[4])), # expression(f(x[5])),expression(f(x[6]))) par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(GASP_type2_f2,f2,data.f2, "Type 2 GASP",labels = x2,xlab= "z",ylab = " g", ylim = ylim,plot_training = TRUE) le <- link(f1_MLEs, f2_MLEs, as.matrix(xn)) ## Construct an empirical emulator n.samples = 100 em2.runs<-mat.or.vec(n.samples,length(s)) library(MASS) for(i in 1:n.samples) { GASP = eval_type2_GASP(as.matrix(mvrnorm(1,s,diag(s.var))),f2_MLEs) em2.runs[i,] <- mvrnorm(1,GASP$mu, GASP$var) } ## Plot the empirical GASP emulator data.f2f1 <- list(training = x1,fD = f2f1(x1), smooth = 2) par(mar = c(6.1, 6.1, 5.1, 2.1)) emp_GASP_plot(le$em2,f2f1,data.f2f1,"Linked",apply(em2.runs,2,quantile,probs = 0.025), apply(em2.runs,2,quantile,probs = 0.975), ylab = expression("g" ~ scriptscriptstyle(O) ~ "f"),xlab = "x, input",ylim = ylim)
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## Function f2 is a simulator f2<-function(x){cos(5*x)} ## Function f2(f1) is a simulator of a composite model f2f1 <- function(x){f2(f1(x))} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with the ## assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs) par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) GASP_plot(GASP_type2_f1,f1,data.f1,"Type 2 GASP",ylab = " f",xlab = "x", ylim = ylim, plot_training = TRUE) s = GASP_type2_f1$mu s.var = diag(GASP_type2_f1$var) x2 = seq(-0.95,0.95,length = 6)#f1(x1) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) # linking requires this emulator ## to have smoothness parameter equal to 2 f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) GASP_type1_f2 <- eval_type1_GASP(as.matrix(seq(-3.5,3.5,.01)),f2_MLEs) GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1,1,.01)),f2_MLEs) TGASP_f2 <- eval_TGASP(as.matrix(seq(-1,1,.01)),f2_MLEs) ylim = c(-1.5,1.5) # labels = c(expression(phantom(x)*phantom(x)*phantom(x)*f(x[1])), # expression(f(x[2])*phantom(x)*phantom(x)*phantom(x)), # expression(f(x[3])),expression(f(x[4])), # expression(f(x[5])),expression(f(x[6]))) par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(GASP_type2_f2,f2,data.f2, "Type 2 GASP",labels = x2,xlab= "z",ylab = " g", ylim = ylim,plot_training = TRUE) le <- link(f1_MLEs, f2_MLEs, as.matrix(xn)) ## Construct an empirical emulator n.samples = 100 em2.runs<-mat.or.vec(n.samples,length(s)) library(MASS) for(i in 1:n.samples) { GASP = eval_type2_GASP(as.matrix(mvrnorm(1,s,diag(s.var))),f2_MLEs) em2.runs[i,] <- mvrnorm(1,GASP$mu, GASP$var) } ## Plot the empirical GASP emulator data.f2f1 <- list(training = x1,fD = f2f1(x1), smooth = 2) par(mar = c(6.1, 6.1, 5.1, 2.1)) emp_GASP_plot(le$em2,f2f1,data.f2f1,"Linked",apply(em2.runs,2,quantile,probs = 0.025), apply(em2.runs,2,quantile,probs = 0.975), ylab = expression("g" ~ scriptscriptstyle(O) ~ "f"),xlab = "x, input",ylim = ylim)
This function evaluates parameters of a Gaussian stochastic process emulator of a computer model based on a few observations which are available from the simulator of a computer model.
eval_GASP_RFP(data, basis, corr.cols, nugget)
eval_GASP_RFP(data, basis, corr.cols, nugget)
data |
list which consists of three objects: training input values (which may be multivariate, along several dimensions), corresponding output values of a simulator (scalar) and a vector of smoothness parameter(s) along each input direction. |
basis |
A set of functions in the mean of a Gaussian process. Typically assumed to be linear in one or several dimensions. |
corr.cols |
specifies which input directions must be included in the specification of a correlation function. |
nugget |
Parameter which accounts for possible small stochastisity in the output of a computer model. Default is FALSE. |
See examples which illustrate inputs specification to the function.
Function returns a list of objects, including estimates of parameters, which is subsequently may be used for construction of a GASP approximation with the estimated parameters and the data involved.
delta |
Estimates of range parameters in the correlation function. |
eta |
Estimates of a nugget. |
sigma.sq |
Estimates of variance. |
data |
Input parameter returned for convenience. |
nugget |
Input parameter returned for convenience. |
basis |
Input parameter returned for convenience. |
corr.cols |
Input parameter returned for convenience. |
Ksenia N. Kyzyurova, kseniak.ucoz.net.
Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018
Gu, M., Wang, X., Berger, J. O. et al. (2018) Robust Gaussian stochastic process emulation. The Annals of Statistics, 46, 3038-3066.
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## data.f1 contains the list of data inputs (training) and outputs (fD) together with the assumed ## fixed smoothness of a computer model output. This corresponds to the smoothness in a product ## power exponential correlation function used for construction of the emulator. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## data.f1 contains the list of data inputs (training) and outputs (fD) together with the assumed ## fixed smoothness of a computer model output. This corresponds to the smoothness in a product ## power exponential correlation function used for construction of the emulator. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)
This function evaluates the third GASP of a computer model within objective Bayesian (OB) implementation of the GASP, resulting in T-GASP.
eval_TGASP(input, GASPparams)
eval_TGASP(input, GASPparams)
input |
Input values (the same dimension as training input data in the next argument GASPparams) |
GASPparams |
The output of the function eval_GASP_RFP. |
Function returns a list of three objects
x |
Inputs. |
mu |
Mean of an emulator. |
var |
Covariance matrix of an emulator. |
Ksenia N. Kyzyurova, kseniak.ucoz.net.
## Function f2 is a simulator f2<-function(x){cos(5*x)} ## One-dimensional inputs x2 x2 = seq(-0.95,0.95,length = 6) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) ## Evaluation of GASP parameters f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluation of a T-GASP emulator TGASP_f2 <- eval_TGASP(as.matrix(seq(-1,1,.01)),f2_MLEs)
## Function f2 is a simulator f2<-function(x){cos(5*x)} ## One-dimensional inputs x2 x2 = seq(-0.95,0.95,length = 6) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) ## Evaluation of GASP parameters f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluation of a T-GASP emulator TGASP_f2 <- eval_TGASP(as.matrix(seq(-1,1,.01)),f2_MLEs)
This function evaluates the first GASP of a computer model using maximum a posteriori estimates (MAP) of parameters of the GASP.
eval_type1_GASP(input, GASPparams)
eval_type1_GASP(input, GASPparams)
input |
input values (the same dimension as training input data in the next argument GASPparams) |
GASPparams |
The output of the function eval_GASP_RFP. |
See examples which illustrate inputs specification to the function.
Function returns a list of three objects
x |
Inputs. |
mu |
Mean of an emulator. |
var |
Covariance matrix of an emulator. |
Ksenia N. Kyzyurova, kseniak.ucoz.net.
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with the ## assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type1_f1 <- eval_type1_GASP(as.matrix(xn),f1_MLEs)
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with the ## assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type1_f1 <- eval_type1_GASP(as.matrix(xn),f1_MLEs)
This function evaluates the second GASP of a computer model within partial objective Bayesian (POB) implementation of the GASP.
eval_type2_GASP(input, GASPparams)
eval_type2_GASP(input, GASPparams)
input |
input values (the same dimension as training input data in the next argument GASPparams) |
GASPparams |
The output of the function eval_GASP_RFP. |
See examples which illustrate inputs specification to the function.
Function returns a list of three objects
x |
Inputs. |
mu |
Mean of an emulator. |
var |
Covariance matrix of an emulator. |
Ksenia N. Kyzyurova, kseniak.ucoz.net.
## Function f2 is a simulator f2<-function(x){cos(5*x)} ## One-dimensional inputs x2 x2 = seq(-0.95,0.95,length = 6) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) ## Evaluation of GASP parameters f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluation of a second type GASP emulator GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1,1,.01)),f2_MLEs)
## Function f2 is a simulator f2<-function(x){cos(5*x)} ## One-dimensional inputs x2 x2 = seq(-0.95,0.95,length = 6) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) ## Evaluation of GASP parameters f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluation of a second type GASP emulator GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1,1,.01)),f2_MLEs)
Function allows to plot the GASP in case of one-dimensional input.
GASP_plot(em, fun, data, emul_type, labels, yax, ylab, xlab,ylim, col_CI_area,col_points,col_fun,col_mean,plot_training = FALSE, plot_fun = TRUE)
GASP_plot(em, fun, data, emul_type, labels, yax, ylab, xlab,ylim, col_CI_area,col_points,col_fun,col_mean,plot_training = FALSE, plot_fun = TRUE)
em |
the returned output from the function eval_type1_GASP(...) or eval_type2_GASP(...). |
fun |
Simulator function. Currently only one-dimensional input is supported. |
data |
Training data and smoothness. The same as supplied to eval_GASP_RFP(...) for construction of the GASP. |
emul_type |
A text string which provides description of an emulator. |
labels |
As in standard R plot. |
yax |
As in standard R plot. |
ylab |
As in standard R plot. |
xlab |
As in standard R plot. |
ylim |
As in standard R plot. |
col_CI_area |
Color of a credible area. |
col_points |
Color of the training points. |
col_fun |
Color of a simulator function. |
col_mean |
Color of the emulator of the GASP mean. |
plot_training |
(Not) to plot the training points. Default is FALSE. |
plot_fun |
(Not) to plot the simulator function. Default is TRUE. |
Plot
The function requires further development to be automated for visualization along a single dimension out of multiple dimensions and along two dimensions out of multiple dimensions.
Ksenia N. Kyzyurova, kseniak.ucoz.net
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with the ## assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type1_f1 <- eval_type1_GASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) GASP_plot(GASP_type1_f1,fun = f1,data = data.f1,"",ylim = ylim, plot_training = TRUE)
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with the ## assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type1_f1 <- eval_type1_GASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) GASP_plot(GASP_type1_f1,fun = f1,data = data.f1,"",ylim = ylim, plot_training = TRUE)
Function constructs a linked GASP emulator of a composite computer model f2(f1).
link(f1_MLEs, f2_MLEs, test_input)
link(f1_MLEs, f2_MLEs, test_input)
f1_MLEs |
Parameters of the emulator of a simulator f1. |
f2_MLEs |
Parameters of the emulator of a simulator f2. |
test_input |
Testing inputs. |
See examples which illustrate inputs specification to the function.
Four types of the linked GASP.
em1 |
Type 1 emulator, which uses MAP estimates of parameters. |
em2 |
Type 2 emulator within partial objective Bayesian (POB) implementation. |
emT |
T-GASP emulator within objective Bayesian (OB) implementation. |
em3 |
Approximated T-GASP emulator with the Gaussian distribution. |
Ksenia N. Kyzyurova, kseniak.ucoz.net
Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## Function f2 is a simulator f2<-function(x){cos(5*x)} ## Function f2(f1) is a simulator of a composite model f2f1 <- function(x){f2(f1(x))} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs) par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) GASP_plot(GASP_type2_f1,f1,data.f1,"Type 2 GASP",ylab = " f",xlab = "x", ylim = ylim, plot_training = TRUE) s = GASP_type2_f1$mu s.var = diag(GASP_type2_f1$var) x2 = seq(-0.95,0.95,length = 6)#f1(x1) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) # linking requires this emulator # to have smoothness parameter equal to 2 f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) GASP_type1_f2 <- eval_type1_GASP(as.matrix(seq(-3.5,3.5,.01)),f2_MLEs) GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1,1,.01)),f2_MLEs) TGASP_f2 <- eval_TGASP(as.matrix(seq(-1,1,.01)),f2_MLEs) ylim = c(-1.5,1.5) # labels = c(expression(phantom(x)*phantom(x)*phantom(x)*f(x[1])), # expression(f(x[2])*phantom(x)*phantom(x)*phantom(x)), # expression(f(x[3])),expression(f(x[4])), # expression(f(x[5])),expression(f(x[6]))) par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(GASP_type2_f2,f2,data.f2, "Type 2 GASP",labels = x2,xlab= "z",ylab = " g", ylim = ylim,plot_training = TRUE) le <- link(f1_MLEs, f2_MLEs, as.matrix(xn)) ## Plot second type of the linked GASP data.f2f1 <- list(training = x1,fD = f2f1(x1), smooth = 2) par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(le$em2,f2f1,data.f2f1,"Linked",labels = x1, ylab = expression("g" ~ scriptscriptstyle(O) ~ "f"),xlab = "x",ylim = ylim)
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## Function f2 is a simulator f2<-function(x){cos(5*x)} ## Function f2(f1) is a simulator of a composite model f2f1 <- function(x){f2(f1(x))} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs) par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) GASP_plot(GASP_type2_f1,f1,data.f1,"Type 2 GASP",ylab = " f",xlab = "x", ylim = ylim, plot_training = TRUE) s = GASP_type2_f1$mu s.var = diag(GASP_type2_f1$var) x2 = seq(-0.95,0.95,length = 6)#f1(x1) data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) # linking requires this emulator # to have smoothness parameter equal to 2 f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE) GASP_type1_f2 <- eval_type1_GASP(as.matrix(seq(-3.5,3.5,.01)),f2_MLEs) GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1,1,.01)),f2_MLEs) TGASP_f2 <- eval_TGASP(as.matrix(seq(-1,1,.01)),f2_MLEs) ylim = c(-1.5,1.5) # labels = c(expression(phantom(x)*phantom(x)*phantom(x)*f(x[1])), # expression(f(x[2])*phantom(x)*phantom(x)*phantom(x)), # expression(f(x[3])),expression(f(x[4])), # expression(f(x[5])),expression(f(x[6]))) par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(GASP_type2_f2,f2,data.f2, "Type 2 GASP",labels = x2,xlab= "z",ylab = " g", ylim = ylim,plot_training = TRUE) le <- link(f1_MLEs, f2_MLEs, as.matrix(xn)) ## Plot second type of the linked GASP data.f2f1 <- list(training = x1,fD = f2f1(x1), smooth = 2) par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(le$em2,f2f1,data.f2f1,"Linked",labels = x1, ylab = expression("g" ~ scriptscriptstyle(O) ~ "f"),xlab = "x",ylim = ylim)
Evaluates frequentist performance of the GASP.
NGASPmetrics(GASP, true_output, ref_output)
NGASPmetrics(GASP, true_output, ref_output)
GASP |
GASP emulator. |
true_output |
Output from the simulator. |
ref_output |
Heuristic emulator output. |
List of performance measures.
RMSPE_base |
Root mean square predictive error with respect to the heuristic emulator output. |
RMSPE |
Root mean square predictive error for the emulator output |
ratio |
ratio of RMSPE_base to RMSPE. Ratio = RMSPE_base/RMSPE |
CIs |
95% central credible intervals |
emp_cov |
95% empirical coverage within the CIs |
length_CIs |
Average lenght of 95% central credible intervals |
Ksenia N. Kyzyurova, ksenia.ucoz.net
Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(GASP_type2_f1,data = data.f1,emul_type = "",ylim = ylim, plot_training = TRUE) ## Measure performance of an emulator NGASPmetrics(GASP_type2_f1,f1(xn),mean(f1(xn)))
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mar = c(6.1, 6.1, 5.1, 2.1)) GASP_plot(GASP_type2_f1,data = data.f1,emul_type = "",ylim = ylim, plot_training = TRUE) ## Measure performance of an emulator NGASPmetrics(GASP_type2_f1,f1(xn),mean(f1(xn)))
Function allows to plot the TGASP in case of one-dimensional input. Black-and-white version.
TGASP_plot(tem, fun, data, labels, ylim, points)
TGASP_plot(tem, fun, data, labels, ylim, points)
tem |
TGasP emulator. |
fun |
Simulator function. |
data |
Training data and smoothness. The same as supplied to eval_GASP_RFP(...) for construction of a GASP. |
labels |
As in standard R plot. |
ylim |
As in standard R plot. |
points |
(Not) to plot the training points. |
See examples.
Plot
The function requires further development to be automated for visualization along a single dimension out of multiple dimensions and along two dimensions out of multiple dimensions.
This function needs to be automated to allow for fast visualization of a single emualtor (with no comparison to the actual simulator function), etc.
Ksenia N. Kyzyurova, kseniak.ucoz.net
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) TGASP_f1 <- eval_TGASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) TGASP_plot(TGASP_f1,f1,data.f1,ylim = ylim)
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) TGASP_f1 <- eval_TGASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) TGASP_plot(TGASP_f1,f1,data.f1,ylim = ylim)
Evaluates frequentist performance of a T-GASP.
TGASPmetrics(TGASP, true_output, ref_output)
TGASPmetrics(TGASP, true_output, ref_output)
TGASP |
TGASP emulator (in the paper this is done within an objective Bayesian implementation - OB emulator.) |
true_output |
Output from the simulator. |
ref_output |
Heuristic emulator output. |
See examples which illustrate the use of the function.
List of performance measures.
RMSPE_base |
Root mean square predictive error with respect to the heuristic emulator output. |
RMSPE |
Root mean square predictive error for the emulator output |
ratio |
ratio of RMSPE_base to RMSPE. Ratio = RMSPE_base/RMSPE |
CIs |
95% central credible intervals |
emp_cov |
95% empirical coverage within the CIs |
length_CIs |
Average lenght of 95% central credible intervals |
Ksenia N. Kyzyurova, ksenia.ucoz.net
Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) TGASP_f1 <- eval_TGASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) TGASP_plot(TGASP_f1,f1,data.f1,ylim = ylim) ## Measure the performance of the emulator TGASPmetrics(TGASP_f1,f1(xn),mean(f1(xn)))
## Function f1 is a simulator f1<-function(x){sin(pi*x)} ## One-dimensional inputs are x1 x1 <- seq(-1,1,.37) ## The following contains the list of data inputs (training) and outputs (fD) together with ## the assumed fixed smoothness of a computer model output. data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99) ## Evaluation of GASP parameters f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE) ## Evaluate the emulator xn = seq(-1,1,.01) TGASP_f1 <- eval_TGASP(as.matrix(xn),f1_MLEs) ## Plot the emulator par(mfrow = c(1,1)) par(mar = c(6.1, 6.1, 5.1, 2.1)) ylim = c(-1.5,1.5) TGASP_plot(TGASP_f1,f1,data.f1,ylim = ylim) ## Measure the performance of the emulator TGASPmetrics(TGASP_f1,f1(xn),mean(f1(xn)))